Quantifying and minimising systematic and random errors in X-ray micro-tomography based volume measurements
نویسندگان
چکیده
X-ray micro-tomography (XMT) is increasingly used for the quantitative analysis of the volumes of features within the 3D images. As with any measurement, there will be error and uncertainty associated with these measurements. In this paper a method for quantifying both the systematic and random components of this error in the measured volume is presented. The systematic error is the offset between the actual and measured volume which is consistent between different measurements and can therefore be eliminated by appropriate calibration. In XMT measurements this is often caused by an inappropriate threshold value. The random error is not associated with any systematic offset in the measured volume and could be caused, for instance, by variations in the location of the specific object relative to the voxel grid. It can be eliminated by repeated measurements. It was found that both the systematic and random components of the error are a strong function of the size of the object measured relative to the voxel size. The relative error in the volume was found to follow approximately a power law relationship with the volume of the object, but with an exponent that implied, unexpectedly, that the relative error was proportional to the radius of the object for small objects, though the exponent did imply that the relative error was approximately proportional to the surface area of the object for larger objects. In an example application involving the size of mineral grains in an ore sample, the uncertainty associated with the random error in the volume is larger than the object itself for objects smaller than about 8 voxels and is greater than 10% for any object smaller than about 260 voxels. A methodology is presented for reducing the random error by combining the results from either multiple scans of the same object or scans of multiple similar objects, with an uncertainty of less than 5% requiring 12 objects of 100 voxels or 600 objects of 4 voxels. As the systematic error in a measurement cannot be eliminated by combining the results from multiple measurements, this paper introduces a procedure for using volume standards to reduce the systematic error, especially for smaller objects where the relative error is larger. & 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
منابع مشابه
Airway dimensions measured from micro-computed tomography and high-resolution computed tomography.
Volume averaging results in both over- and underestimation of airway dimensions when they are measured by high-resolution computed tomography (HRCT). The current authors calibrated computerised measurements of airway dimensions from HRCT against a novel three-dimensional micro-computed tomography (CT) standard, which has a 50-fold greater resolution, as well as against traditional morphometry. ...
متن کاملUtilization of Electronic Portal Imaging Device (EPID) For Setup Verification and Determination of Setup Margin in Head and Neck Radiation Therapy
Introduction: Radiation therapy involves a multistep procedure; therefore, the error in patient set up is an inherent part of the treatment. Main purpose of this study was to determine the clinical target volume (CTV) to planning target volume (PTV) in head and neck cancer patients. Material and Methods: A total of 15 patients who had daily p...
متن کاملMeasurement of the immobilisation efficacy of a head fixation system
Background: In order to assign appropriate planning target volume (PTV) margins, each centre should measure the patient positioning deviations for their set-up techniques. At the Royal Marsden Hospital, UK, a conformal shell (cast) system is used when a stereotactic frame is not suitable. In this paper, we report on a series of measurements with the aim of obtaining the systematic and random ...
متن کاملBackground-Based Delineation of Internal Tumor Volumes on Static Positron Emission Tomography in a Phantom Study
Objective(s): Considering the fact that the standardized uptake value (SUV) of a normal lung tissue is expressed as x±SD, x+3×SD could be considered as the threshold value to outline the internal tumor volume (ITV) of a lung neoplasm. Methods: Three hollow models were filled with 55.0 kBq/mL fluorine18- fluorodeoxyglucose (18F-FDG) to represent tumors. The models were fixed to a barrel filled w...
متن کاملQuantifying Not Only Bone Loss, but Also Soft Tissue Swelling, in a Murine Inflammatory Arthritis Model Using Micro-Computed Tomography
In rodent models of inflammatory arthritis, bone erosion has been non-invasively assessed by micro-computed tomography (micro-CT). However, non-invasive assessments of paw swelling (oedema) are still based on clinical grading by visual evaluation, or measurements by callipers, not always reliable for the tiny mouse paws. The aim of this work was to demonstrate a novel straightforward 3D micro-C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Geosciences
دوره 77 شماره
صفحات -
تاریخ انتشار 2015